

EGRAFLEX STEELFLON WAVELINE XWLP®

Multilayer flat gasket with huge potential

EGRAFLEX STEELFLONWAVELINE WLP®

${\sf Multilayer flat} gasket with huge potential$

System operators and gasket manufacturers are constantly looking for better solutions to seal flange connections efficiently, reliably and safely without harming the environment. For applications in the higher temperature range, graphite composite materials, PTFE-based materials and metal-soft material gaskets are becoming increasingly important.

Teams made up of system operators and lawmakers are contributing towards defining valid specifications for all operators. This aims to ensure that the required claims for environmental protection and plant safety are complied with.

PROBLEM

The aforementioned material combinations continually come up against application limits.

Aim of the product development: Only the positive properties, as shown in the table below, should become effective. The result is a sealing plate from the components graphite and stainless-steel films with PTFE covering films attached on both sides in adhesive-free (!) composite – the multilayer plate "Egraflex Steelflon MF[®]"

PROPERTIES	PTFE	GRAPHITE	STAINLESS STEAL	EGRAFLEX STEELFLON WAVELINE WLP [®]
COMPENSATING UNEVENNESS	medium	very good	poor	VERY GOOD
REQUIRED AREA COMPRESSION/CLAMPING FORCE	medium	medium	very high	VERY LOW
HANDLING	very good	poor	good	VERY GOOD
CHEMICAL RESISTANCE	very good	good	good	GOOD
SEALING PERFORMANCE	very good	good	very good	VERY GOOD
RESILIENCE	poor	good	poor	GOOD
INTERNAL PRESSURE RESISTANCE	medium	medium	very good	GOOD
AGING RESISTANCE	good	very good	very good	VERY GOOD
TEMPERATURE RESISTANCE	medium	good	very good	MEDIUM
AVAILABILITY OF SPECIAL GEOMETRIES	good	good	poor	GOOD
DISPOSAL	POOR	GOOD	GOOD	GOOD

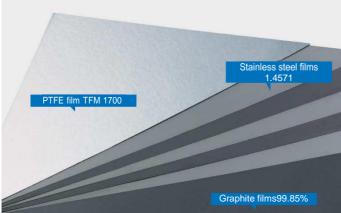


Photo: Mulitlayerplatte Sigraflex MF®

Photo: Grinding pattern of an Egraflex Steelflon Waveline WLP® gasket

Egraflex Steelflon Waveline WLP® isa solution that fulfils these requirements. Based on the known multilayer sealingplate "Sigraflex® MF", made by SGL,this product has been manufactured as Egraflex Steelflon since 1995 and is used very successfully in prominent industrial companies.

Laminate thicknesses are chosen corresponding to the target objective.We punch gaskets from the plate material and provides these with an internalenclosure made from VA. Finally, the gasket is prepressed with very precisely defined force with the aim of attainingan effective, corrugated cross-section geometry.

The corrugated geometry clearly visible in the above grinding pattern forms a sine curve. A strong pre-compression over all material layers is achieved. As graphite does not undergo any noteworthy change in thickness from approx. 50 MPa, the settling behaviour of the gasket is significantly improved in practice with the Waveline WLP® process. The VA internal enclosure also receives this pre-compression, thereby closing off the sealing cross-section without theflange having to apply the normal deformation work. The following values result correspondingly according to EN 13555. (Please find the values in the diagrams on the rear.)

WAVELINE WLP [®] APPROVALS

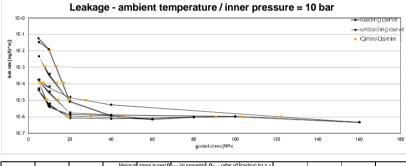
TA-Luft FDA BAM DVGW VCI Guidelines Leaktightness and strength validations according to DIN EN 1591 The PTFE cover films applied on both sides ensure short installation times when changing the gaskets.

Adhesion to the flange is prevented – the gasket can be removed without leaving any residues. Further spreading or disassembly of the flange for cleaning the sealing surfaces is no longer necessary, which means the flange cleaning can be carried out without fault.

The pre-compression and structure of the gasket prevents the absorption of water and hence failure of the gasket, which can result from the installation of wet graphite gaskets. Installation safety

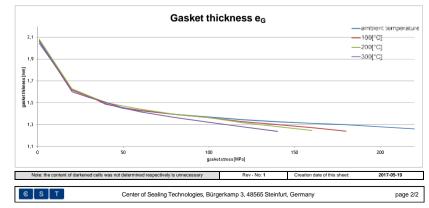
For a clear improvement in the in tallation safety and precise, reliableassignmentofthegasket,EgraflexSteelflonWaveline WLP[®] gaskets can also be supplied with part marking. This typically includes information on theinstallation torque, nominal width and nominal pressure, manufacturer, customerparts number and material data.

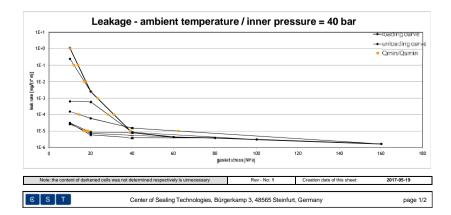
The gasket is available in thickne sesfrom 2.0 to 4.0 mm. Standard dimensions in stock. Special sizes: any geometry up todiameter 4,5 omm available!


BENEFITS AT A GLANCE:

minimum settling behaviour extremely high leak tightnessno sticking to the flange no contamination of the gasket/medium rapid installation times thanks to good handlinguniversal use = reduced warehousing relevant approvals available

Values according to EN 13555:


Company Address		According to DIN EN 13555
Gasket Type	Egraflex Steelflon Waveline WLP	
Sealing element dimensions [mm]	92 x 49 x 2.3	2014-07


	Minimum stress to seal Q _{enter} (at assembly), Q _{enert} (after off-loading) for p = 10 bar													
			Q _{SminL} [MPa]											
L [mg/(s*m)] C _{mint} [MPa]	Q _A = 10 MPa	Q _A = 20 MPa	Q _A = 40 MPa	Q _A = 60 MPa	Q _A = 80 MPa	Q _A = 100 MPa	Q _A = 160 MPa							
10-0	5	5	5	5	5	5	5	5						
10-1	5	5	5	5	5	5	5	5						
10-2	10		5	5	5	5	5	5						
10-3	13		8	5	5	5	5	5						
10-4	17		13	6	5	5	7	7						
10-5	20		20	9	9	9	14	28						
10-6	46				30	19		122						
10-7														
10-*														

			winninnun	suess to seal Q	mint (at assertion)), asmit (alter on	roading) for p =		
L [mg/(s*m)] C _{mint.} [MPa]					Q _{Smin}	[MPa]			
	Q _A = 20 MPa C	_A = 40 MPa Q _A =	0 MPa Q _A = 80	IPa Q _A = 100 MF	a Q _A = 160 MPa				
10-	10	10	10	10	10	10	10		
10-1	14	12	10	10	10	10	10		
10-2	18	17	10	10	10	10	10		
10-1	23		10	10	10	10	10		
10-4	31		10	10	10	29	15		
10%	39		19	18	17	39	63		

Company Address										ding to	
Gasket Type Sealing element dimensions [mm]				Egraflex	Steelflon Wave	aline WLP			DIN EN 1355 2014-07		
					92 x 49 x 2.3						
			_								
	r			ition ratio P _{or} for							
Gasket stress		re 1 [25 °C]		e 2 [100 °C]		e 3 [200 °C]		e 4 [300 °C]	_		
	Par	∆e _{Gc} [mm]	Por	∆e _{Gc} [mm]	Por	∆e _{sc} [mm]	Par	∆e _{sc} [mm]	Par	∆e _{Gc} [n	
Stress level 1 [30 MPa]	0,99	0,003	0,92	0,020	0,88	0,030	0,94	0,016			
Stress level 2 [50 MPa]	1,00	0,002	0,99	0,004	0,97	0,015	0,96	0,019			
			P _{op} and	∆e _{Gc} at maximal ap	oplicable gasket str	ess Q _{anax}					
Por at Qsmax	0,99	0,018	0,98	0,038	0,95	0,074	0,91	0,106			
Q _{Smax}	220	MPa	180	MPa	160	MPa	140	MPa			
		Sekan	t unloading modu	lus of the gasket	E _g [MPa] and ga	isket thickness e	.[mm]				
	emperature		e 1 [100 °C]		e 2 [200 °C]		e 3 [300 °C]				
Gasket stress [MPa]	E _g [MPa]	es (mm)	E _s [MPa]	e ₆ [mm]	E _g [MPa]	e _a [mm]	E _c [MPa]	e _c [mm]	E _s [MPa]	e _c (m	
0										<u> </u>	
1		2,044		2,073		2,079		2,063			
20	559	1,619	596	1,617	646	1,628	539	1,601			
30	853	1.557	894	1.559	841	1.564	820	1.548			
40	1250	1,490	1275	1,484	1323	1,500	1176	1,503			
50	1445	1,448	1609	1,454	1805	1,470	1545	1,453			
60	1939	1,427	1886	1,430	1781	1,441	1632	1,416			
80	2919	1,394	2659	1,392	2387	1,394	2839	1,364			
100	3549	1,369	4016	1,363	4361	1,363	2930	1,321			
120	3908	1,343	3184	1,327	3058	1,317	3843	1,279			
140	4283	1,324	4809	1,300	5765	1,281	4379	1,238			
160	6167	1,312	5719	1,272	6665	1,246					
180	7443	1,299	6504	1,240							
200	5772	1,280									
220	5971	1,261									

Source: www.gasketdata.org